Abstract

Mutation at the aldox-2 locus in Drosophila melanogaster affects the specific activities of four molybdoenzymes differentially during development. Sulfite oxidase activity is normal during late larval and pupal stages but is reduced during early adult stages in aldox-2 organisms. There was complete concordance among the effects of aldox-2 on sulfite oxidase, aldehyde oxidase, xanthine dehydrogenase, and pyridoxal oxidase, when 38 stocks were analyzed which were derived from single recombination events between c and px, markers which flank aldox-2. Several different biochemical analyses indicate that the active molybdoenzymes present in the aldox-2 strain are normal with respect to size, shape, pH-activity profile, Km, and molecular weight. Significant differences were found between the aldox-2 strain and the OR control strain in their responses to dietary Na2MoO4 and Na2WO4. The mutant strain is much more resistant to the effects of dietary Na2WO4 and much more responsive to the administration of Na2MoO4 than the OR control strain when these effects are quantitated by measurements of molybdoenzyme specific activities. This evidence suggests that the aldox-2+ gene product has a molybdenum binding site which can also bind tungsten and that this site is altered in the mutant strain. The hypothesis presented explains the observed effects of the aldox-2 mutation and relates them to the other mutations reported in this gene-enzyme system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.