Abstract

Skin provides the first defense line against the environment while preserving physiological homeostasis. Subcutaneous tissues including fat depots that are important for maintaining skin structure and alleviating senescence are altered during aging. This study investigated whether theaflavin (TF) in green tea (GT) has skin rejuvenation effects. Specifically, we examined whether high ratio of TF contents can induce the subcutaneous adipogenesis supporting skin structure by modulating lipid metabolism. The co-fermented GT (CoF-GT) fraction containing a high level of TF was obtained by co-fermentation with garland chrysanthemum (Chrysanthemum coronarium) and the conventionally fermented GT (F-GT) fraction was also obtained. The effects of the CoF- or F-GT fractions on adipogenesis were assessed using primary human subcutaneous fat cells (hSCF). Adipogenesis was evaluated based on lipid droplet (LD) formation, as visualized by Oil Red O staining; by analyzing of adipogenesis-related factors by real-time quantitative polyperase chain reaction (RT-qPCR); and by measuring the concentration of adiponectin released into the culture medium by enzyme-linked immunosorbent assay. TF-enriched CoF-GT fraction did not adversely affect hSCF cell viability but induced their adipogenic differentiation, as evidenced by LD formation, upregulation of adipogenesis-related genes, and adiponectin secretion. TF and TF-enriched CoF-GT fraction promoted differentiation of hSCFs and can therefore be used as an ingredient in rejuvenating agents.

Highlights

  • Skin senescence is caused by intrinsic and extrinsic factors and leads to a loss of integrity and physiological functions of skin [1]

  • To achieve high concentrations of TF, we prepared a TF-enriched fraction by co-fermentation with garland chrysanthemum (GC), and changes in the components were assessed by high-performance liquid chromatography (HPLC) (Figure 1)

  • CoF- and F-green tea (GT) fractions obtained in the preceding fermentation step were used for subsequent experiments

Read more

Summary

Introduction

Skin senescence is caused by intrinsic and extrinsic factors and leads to a loss of integrity and physiological functions of skin [1]. Subcutaneous adipose tissue plays an important role in skin rejuvenation [6]; subcutaneous adipocytes interact with fibroblasts and associate with elastic fibers in the dermal layer, thereby influencing the mechanical and structural properties of skin layers [7]. These fat-storing cells become thinner with aging and show a reduction in thermogenic capacity and structural stability including dermal elasticity, leading to skin wrinkling [8,9]. The decreased function of adipocytes influences lipid metabolism in skin and cellular uptake of circulating free fatty acids, which can cause adverse health outcomes such as dyslipidemia [11], metabolic syndrome [12], and insulin resistance [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call