Abstract

The Hawaii Scientific Drilling Project, phase 2 (HSDP‐2), recovered core from a ∼3.1‐km‐thick section through the eastern flanks of Mauna Loa and Mauna Kea volcanoes. We report results of40Ar/39Ar incremental heating by broad‐beam infrared laser of 16 basaltic groundmass samples and 1 plagioclase separate, mostly from K‐poor tholeiites. The tholeiites generally have mean radiogenic40Ar enrichments of 1–3%, and some contain excess40Ar; however, isochron ages of glass‐poor samples preserve stratigraphic order in all cases. A 246‐m‐thick sequence of Mauna Loa tholeiitic lavas yields an isochron age of 122 ± 86 kyr (all errors 2σ) at its base. Beneath the Mauna Loa overlap sequence lie Mauna Kea's postshield and shield sequences. A postshield alkalic lava yields an age of 236 ± 16 kyr, in agreement with an age of 240 ± 14 kyr for a geochemically correlative flow in the nearby HSDP‐1 core hole, where more complete dating of the postshield sequence shows it to have accumulated at 0.9 ± 0.4 m/kyr, from about 330 to <200 ka. Mauna Kea's shield consists of subaerial tholeiitic flows to a depth of 1079 m below sea level, then shallow submarine flows, hyaloclastites, pillow lavas, and minor intrusions to core bottom at 3098 m. Most subaerial tholeiitic flows fail to form isochrons; however, a sample at 984 m yields an age of 370 ± 180 kyr, consistent with ages from similar levels in HSDP‐1. Submarine tholeiites including shallow marine vitrophyres, clasts from hyaloclastites, and pillow lavas were analyzed; however, only pillow lava cores from 2243, 2614, and 2789 m yield reliable ages of 482 ± 67, 560 ± 150, and 683 ± 82 kyr, respectively. A linear fit to ages for shield samples defines a mean accumulation rate of 8.6 ± 3.1 m/kyr and extrapolates to ∼635 kyr at core bottom. Alternatively, a model relating Mauna Kea's growth to transport across the Hawaiian hot spot that predicts downward accelerating accumulation rates that reach ∼20 m/kyr at core bottom (DePaolo and Stolper, 1996) is also consistent with all reliable ages except the deepest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.