Abstract

We examined gene expression patterns in certain single and double pair-rule mutant embryos to determine which of the largely repressive pair-rule gene interactions are most likely to be direct and which interactions are probably indirect. From these studies we conclude that: (i) hairy+ and even-skipped (eve+) regulate the fushi tarazu (ftz) gene; (ii) eve+ and runt+ regulate the hairy gene; (iii) runt+ regulates the eve gene; but, (iv) runt does not regulate the ftz gene pattern, and hairy does not regulate the eve gene pattern. These pair-rule interactions are not sufficient, however, to explain the periodicity of the hairy and eve patterns, so we examined specific gap gene mutant combinations to uncover their regulatory effects on these two genes. Our surprising observation is that the hairy and eve genes are expressed in embryos where the three key gap genes hunchback (hb), Krüppel (Kr), and knirps (kni) have been removed, indicating that these gap genes are not essential to activate the pair-rule genes. In fact, we show that in the absence of either hb+ or kni+, or both gap genes, the Kr+ product represses hairy expression. These results suggest that gap genes repress hairy expression in the interstripe regions, rather than activate hairy expression in the stripes. The molecular basis of pair-rule gene regulation by gap genes must involve some dual control mechanisms such that combinations of gap genes affect pair-rule transcription in a different manner than a single gap gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call