Abstract
AbstractWe study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin–Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.