Abstract
We have developed cleaning methods for extracting diatomopal from bulk marine sediment samples, for measurement of both zinc (Zn) abundance and isotope composition. This cleaning technique was then applied to a set of Holocene core-top samples from the Southern Ocean. The measured δ66Zn (reported relative to the JMCLyon standard) and Zn/Si ratios from the Southern Ocean diatomopal samples range from 0.7 to 1.5‰, and from 14 to 0.9μmol/mol, respectively. The Zn abundance and isotope composition data show a clear correlation with opal burial rates and other oceanographic parameters. In common with previous work, we interpret the systematic changes in the Zn/Si ratio to be linked to the variability in the concentrations of bioavailable Zn in the ambient surface seawater where the diatom opal is formed. This variability is likely to be primarily controlled by the degree to which Zn is taken up into phytoplankton biomass. The observed systematic pattern in the δ66Zn compositions of the diatomopal core-top samples is, similarly, likely to reflect changes in the δ66Zn composition of the ambient Zn in the surface waters above the core-top sites, which is progressively driven towards isotopically heavier values by preferential incorporation of the lighter isotopes into phytoplankton organic material. Thus, the systematic relationship between Zn isotopes and abundance observed in the core-top diatomopal samples suggests a potential tool for investigating the biogeochemical cycling of Zn in the past surface ocean for down-core diatomopal material. In this respect, it may be possible to test hypotheses that attribute variations in atmospheric CO2 on glacial–interglacial timescales to the degree to which trace metals limited primary productivity in HNLC zones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.