Abstract

Hindbrain precerebellar neurons arise from progenitor pools at the dorsal edge of the embryonic hindbrain: the caudal rhombic lip. These neurons follow distinct migratory routes to establish nuclei that provide climbing or mossy fiber inputs to the cerebellum. Gli3, a zinc-finger transcription factor in the Sonic hedgehog signaling pathway, is an important regulator of dorsal brain development. We demonstrate that in Gli3-null mutant mice, disrupted neuronal migratory streams lead to a disorganization of precerebellar nuclei. Precerebellar progenitors are properly established in Gli3-null embryos and, using conditional gene inactivation, we provide evidence that Gli3 does not play a cell-autonomous role in migrating precerebellar neurons. Thus, GLI3 likely regulates the development of other hindbrain structures, such as non-precerebellar nuclei or cranial ganglia and their respective projections, which may in turn influence precerebellar migration. Although the organization of non-precerebellar hindbrain nuclei appears to be largely unaffected in absence of Gli3, trigeminal ganglia and their central descending tracts are disrupted. We show that rostrally migrating precerebellar neurons are normally in close contact with these tracts, but are detached in Gli3-null embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.