Abstract
Spinal muscular atrophy (SMA) is caused by mutation of the Survival Motor Neurons 1 (SMN1) gene and is characterized by degeneration of spinal motor neurons. The severity of SMA is primarily influenced by the copy number of the SMN2 gene. Additional modifier genes that lie outside the SMA locus exist and one gene that could modify SMA is the Zinc Finger Protein (ZPR1) gene. To test the significance of ZPR1 downregulation in SMA, we examined the effect of reduced ZPR1 expression in mice with mild and severe SMA. We report that the reduced ZPR1 expression causes increase in the loss of motor neurons, hypermyelination in phrenic nerves, increase in respiratory distress and disease severity and reduces the lifespan of SMA mice. The deficiency of SMN-containing sub-nuclear bodies correlates with the severity of SMA. ZPR1 is required for the accumulation of SMN in sub-nuclear bodies. Further, we report that ZPR1 overexpression increases levels of SMN and promotes accumulation of SMN in sub-nuclear bodies in SMA patient fibroblasts. ZPR1 stimulates neurite growth and rescues axonal growth defects in SMN-deficient spinal cord neurons from SMA mice. These data suggest that the severity of disease correlates negatively with ZPR1 levels and ZPR1 may be a protective modifier of SMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.