Abstract

The alcA gene which is part of the recently identified ethanol regulon, is one of the most strongly inducible genes in Aspergillus nidulans. Its transcriptional activation is mediated by the AlcR transactivator which contains a DNA-binding domain belonging to the C6 zinc binuclear cluster family. AlcR differs from the other members of this family by several features, the most striking characteristic being its binding to both symmetric and asymmetric DNA sites with the same apparent affinity. However, AlcR is also able to bind to a single site with high affinity, suggesting that unlike the other C6 proteins, AlcR binds as a monomer. In this report, we show that AlcR targets, to be functional in vivo, have to be organized as inverted or direct repeats. In addition, we show a strong synergistic activation of alcA transcription in which the number and the position of the AlcR-binding sites are crucial. The fact that the AlcR unit for in vitro binding is a single site whereas the in vivo functional unit is a repeat opens the question of the mechanism of the strong alcA transactivation. These results show that AlcR displays both in vitro and in vivo a new range of binding specificity and provides a novel example in the C6 zinc cluster protein family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.