Abstract

Let g and p be non-negative integers. Let A(g,p) denote the group consisting of all those automorphisms of the free group on {t_1,...,t_p, x_1,...,x_g, y_1,...y_g} which fix the element t_1t_2...t_p[x_1,y_1]...[x_g,y_g] and permute the set of conjugacy classes {[t_1],....,[t_p]}. Labru\`ere and Paris, building on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, showed that A(g,p) is generated by a set that is called the ADLH set. We use methods of Zieschang and McCool to give a self-contained, algebraic proof of this result. Labru\`ere and Paris also gave defining relations for the ADLH set in A(g,p); we do not know an algebraic proof of this for g > 1. Consider an orientable surface S(g,p) of genus g with p punctures, such that (g,p) is not (0,0) or (0,1). The algebraic mapping-class group of S(g,p), denoted M(g,p), is defined as the group of all those outer automorphisms of the one-relator group with generating set {t_1,...,t_p, x_1,...,x_g, y_1,...y_g} and relator t_1t_2...t_p[x_1,y_1]...[x_g,y_g] which permute the set of conjugacy classes {[t_1],....,[t_p]}. It now follows from a result of Nielsen that M(g,p) is generated by the image of the ADLH set together with a reflection. This gives a new way of seeing that M(g,p) equals the (topological) mapping-class group of S(g,p), along lines suggested by Magnus, Karrass, and Solitar in 1966.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call