Abstract

The purpose of the Zeus Mission Study was threefold. As an element of a graduate course in spacecraft system engineering, its purpose was primarily educational — to allow the students to apply their knowledge in a real mission study. The second purpose was to investigate the feasibility of applying advanced technology (the power antenna and solar electric propulsion concepts) to a challenging mission. Finally, the study allowed evaluation of the benefits of using quality-oriented techniques (Quality Function Deployment (QFD) and Taguchi Methods) for a mission study. To encourage innovation, several constraints were placed on the study from the onset. While the primary goal was to place at least one lander on Europa, the additional constraint of no nuclear power sources posed an additional challenge, particularly when coupled with the mass constraints imposed by using a Delta II class launch vehicle. In spite of these limitations, the team was able to develop a mission and spacecraft design capable of carrying three simple, lightweight, yet capable landers. The science return will more than adequately meet the science goals established QFD was used to determine the optimal choice of instrumentation. The lander design was selected from several competing lander concepts, including rovers. The carrier design was largely dictated by the needs of the propulsion system required to support the mission, although the development of a Project Trades Model (PTM) in software allowed for rapid recalculation of key system parameters as changes were made. Finally, Taguchi Methods (Design of Experiments) were used in conjunction with the PTM allowing for some limited optimization of design features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.