Abstract
We consider a Dirichlet series sum _{n=1}^{infty } a_{n}^{-s} where a_{n} satisfies a linear recurrence of arbitrary degree with integer coefficients. Under suitable hypotheses, we prove that it has a meromorphic continuation to the complex plane, giving explicit formulas for its pole set and residues, as well as for its finite values at negative integers, which are shown to be rational numbers. To illustrate the results, we focus on some concrete examples which have also been studied previously by other authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.