Abstract

Approaches to the zero-frequency problem in adaptive text compression are discussed. This problem relates to the estimation of the likelihood of a novel event occurring. Although several methods have been used, their suitability has been on empirical evaluation rather than a well-founded model. The authors propose the application of a Poisson process model of novelty. Its ability to predict novel tokens is evaluated, and it consistently outperforms existing methods. It is applied to a practical statistical coding scheme, where a slight modification is required to avoid divergence. The result is a well-founded zero-frequency model that explains observed differences in the performance of existing methods, and offers a small improvement in the coding efficiency of text compression over the best method previously known. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.