Abstract
For a *-ring [Formula: see text], we associate a simple undirected graph [Formula: see text] having all nonzero left zero-divisors of [Formula: see text] as vertices and, two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. In case of Artinian *-rings and Rickart *-rings, characterizations are obtained for those *-rings having [Formula: see text] a complete graph or a star graph, and sufficient conditions are obtained for [Formula: see text] to be connected and also for [Formula: see text] to be disconnected. For a Rickart *-ring [Formula: see text], we characterize the girth of [Formula: see text] and prove a sort of Beck’s conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.