Abstract
The zero-divisor graph of a commutative semigroup with zero is the graph whose vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices adjacent if the product of the corresponding elements is zero. New criteria to identify zero-divisor graphs are derived using both graph-theoretic and algebraic methods. We find the lowest bound on the number of edges necessary to guarantee a graph is a zero-divisor graph. In addition, the removal or addition of vertices to a zero-divisor graph is investigated by using equivalence relations and quotient sets. We also prove necessary and sufficient conditions for determining when regular graphs and complete graphs with more than two triangles attached are zero-divisor graphs. Lastly, we classify several graph structures that satisfy all known necessary conditions but are not zero-divisor graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.