Abstract

BackgroundAquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown.ResultsThe screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur.ConclusionThe zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.

Highlights

  • Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes

  • The zebrafish aquaporin gene family The screening of the zebrafish genome revealed the presence of 18 putative members of the aquaporin superfamily, most of them existing as duplicate or triplicate genes, ranging in size from 2.2 to 18 kb that encode proteins between 255-320 amino acids long (Figure 1)

  • Unlike the other aquaporin isoforms, we found that Aqp8 has both tandem and genomic duplicates encoded within the genomes of zebrafish and stickleback (Gasterosteus aculeatus)

Read more

Summary

Introduction

Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. Aquaporins constitute a superfamily of major intrinsic proteins (MIPs) that facilitate passive, yet remarkably efficient permeation of water molecules across cellular membranes [1,2]. The first water channel was isolated from human red blood cell membranes as a novel integral membrane protein of 28 kDa (CHIP28). This channel is termed aquaporin-1 (AQP1) [3]. When translocated to the cell membrane, most aquaporins form homotetramers [7,8,9], in which one or two monomers may be glycosylated, but each monomer functions as an independent water channel [10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call