Abstract

Monitoring cycling behaviours of stem and somatic cells in the living animal is a powerful tool to better understand tissue development and homeostasis. The tg(anillin:anillin-eGFP) transgenic line carries the full-length zebrafish F-actin binding protein Anillin fused to eGFP from a bacterial artificial chromosome (BAC) containing Anillin cis-regulatory sequences. Here we report the suitability of the Anillin-eGFP reporter as a direct indicator of cycling cells in the late embryonic and post-embryonic retina. We show that combining the anillin:anillin-eGFP with other transgenes such as ptf1a:dsRed and atoh7:gap-RFP allows obtaining spatial and temporal resolution of the mitotic potentials of specific retinal cell populations. This is exemplified by the analysis of the origin of the previously reported apically and non-apically dividing late committed precursors of the photoreceptor and horizontal cell layers.

Highlights

  • Reliable detection and direct monitoring of cell division events in the living organism is crucial if we want to understand proliferative behaviours in embryonic and post-embryonic tissues

  • Mitoses occur at the apical most side and begin with Anillin-eGFP release in the cytoplasm upon nuclear envelope breakdown in early pro-metaphase (S1 Movie and Fig 1C)

  • Accumulation of Anillin-eGFP at the basal side of the nucleus demarcates the beginning of cytokinesis [8], which proceeds with the basal-to-apical cleavage furrow ingression and positioning of the midbody remnant at the cell apical domain [10,22] (S1 Movie and Fig 1B and 1C)

Read more

Summary

Introduction

Reliable detection and direct monitoring of cell division events in the living organism is crucial if we want to understand proliferative behaviours in embryonic and post-embryonic tissues. We assess expression of the Anillin-eGFP reporter as a versatile indicator of proliferative activities in distinct populations of fate-restricted precursors of the late maturing central retina and stem cell niche of both late embryonic and larval stage.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.