Abstract

The yielding, plastic flow, and fracture behavior of UHMWPE plays an important role in wear and failure mechanisms of total joint replacement components. The primary objective of this study was to compare the yielding, plastic flow, and fracture behavior of two implantable grades of UHMWPE (GUR 1120 vs 4150 HP). The first part of this work explored the hypothesis that up to the polymer yield point, the monotonic loading behavior of UHMWPE displays similar true stress–strain behavior in tension and compression. Uniaxial tension and compression tests were conducted to compare the equivalent true stress vs strain response of UHMWPE up to 0.12 true strain. During monotonic loading, the equivalent true stress–strain behavior was similar in tension and compression up to the yield point. However, investigation of the unloading behavior and permanent plastic deformations showed that classical deviatoric rate independent plasticity theory may dramatically overpredict the permanent strains in UHMWPE. A secondary goal of this study was to determine the ultimate true stress and strain for UHMWPE and to characterize the fracture surfaces after failure. Using a fracture mechanics approach, the critical flaw sizes were used in combination with the true ultimate stresses to predict the fracture toughness of the two resins. A custom video-based strain measurement system was developed and validated to characterize the true stress–strain behavior up to failure and to verify the accuracy of the incompressibility assumption in calculating the true stress–strains up to failure. In a detailed uncertainty analysis, theoretical expressions were derived for the relative uncertainty in digital video-based estimates of nominal strain, true strain, homogeneous stress, and true stress. Although the yielding behavior of the two UHMWPE resins was similar, the hardening and plastic flow behavior clearly discriminated between the GUR 1120 and 4150 HP. A statistically significant difference between the fracture toughness of the two resins was also evident. The long-term goal of this research is to provide detailed true stress–strain data for UHMWPE under uniaxial tension and compression for future numerical simulations and comparison with more complex multiaxial loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call