Abstract
This study investigated the yield behavior of oxygen-free copper under complex stress states and different loading rates. An optimized cruciform specimen and a novel electromagnetic biaxial split Hopkinson bar (EBSHB) were used to perform the dynamic biaxial tension tests at three different load ratios. The non-contact digital image correlation technique was adopted for strain measurement. Quasi-static and dynamic yield surfaces were obtained. Classical yield criteria, including the Tresca and von Mises yield criteria, were evaluated based on the experimental results. The von Mises criterion is found to provide better prediction of the yield surface under both quasi-static and dynamic loadings. The Johnson-Cook model from uniaxial test results provides a moderate prediction for experimental curves, while that from biaxial test results shows better prediction. Dynamic biaxial tests are proven necessary to acquire the constitutive models that can accurately describe the mechanical properties of copper under complex stress states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.