Abstract

The isolated yft1 allele controls the formation of fruit color in n3122 via the regulation of response to ethylene, carotenoid accumulation and chromoplast development. Fruit color is one of the most important quality traits of tomato (Solanum lycopersicum) and is closely associated with both nutritional and market value. In this study, we characterized a tomato fruit color mutant n3122, named as yellow-fruited tomato 1 (yft1), which produces yellow colored mature fruit. Fruit color segregation of the progeny from an intra-specific cross (M82×n3122) and an inter-specific cross (n3122×LA1585) revealed that a single recessive nuclear gene determined the yellow fruit phenotype. Through map-based cloning, the yft1 locus was assigned to an 88.2kb region at the top of chromosome 9 that was annotated as containing 12 genes. Sequencing revealed that one gene, Solyc09g007870, which encodes ETHYLENE INSENSITIVE2 (EIN2), contained two mutations in yft1: a 13bp deletion and a 573bp insertion at position -318bp upstream of the translation initiation site. We detected that EIN2 expression was substantially lower in yft1 than in the red-fruited M82 wild type and that, in addition, carotenoid accumulation was decreased, ethylene synthesis and perception were impaired and chromoplast development was delayed. The results implied that the reduced expression of EIN2 in yft1 leads to suppressed ethylene signaling which results in abnormal carotenoid production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call