Abstract

The budding yeast Saccharomyces cerevisiae undergoes robust oscillations in oxygen consumption during continuous growth under nutrient-limited conditions. Comprehensive microarray studies reveal that more than half of the yeast genome is expressed periodically as a function of these respiratory oscillations, thereby specifying an extensively orchestrated program responsible for regulating numerous cellular outputs. Here, we summarize the logic of the yeast metabolic cycle (YMC) and highlight additional cellular processes that are predicted to be compartmentalized in time. Certain principles of temporal orchestration as seen during the YMC might be conserved across other biological cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.