Abstract

During the cell cycle each organelle has to be faithfully partitioned to the daughter cells. However, the mechanisms controlling organellar inheritance remain poorly understood. We studied the contribution of the cell cortex protein, Num1, to mitochondrial partitioning in yeast. Live-cell microscopy revealed that Num1 is required for attachment of mitochondria to the cell cortex and retention in mother cells. Electron tomography of anchoring sites revealed plasma membrane invaginations directly contacting the mitochondrial outer membrane. Expression of chimeric plasma membrane tethers rescued mitochondrial fission defects in Δnum1 and Δmdm36 mutants. These findings provide new insights into the coupling of mitochondrial dynamics, immobilization, and retention during inheritance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.