Abstract
From now on we deal with a certain orbit space ℳ. This “moduli space” is the set of solutions to the self-dual Yang-Mills equations, but divided out by a natural equivalence. The self-dual Yang-Mills equations are an elliptic (except along orbits of the group of gauge transformations) system of partial differential equations for a connection on a vector bundle over a smooth 4-manifold. The group of gauge transformations is the group of natural equivalences in the vector bundle, hence the natural equivalence in the problem, and so it acts on the space of solutions to the self-dual Yang-Mills equations.KeywordsModulus SpaceVector BundleLine BundleGauge TransformationPrincipal BundleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.