Abstract
Moduli spaces of semi-stable real and quaternionic vector bundles of a fixed topological type admit a presentation as Lagrangian quotients, and can be embedded into the symplectic quotient corresponding to the moduli variety of semi-stable holomorphic vector bundles of fixed rank and degree on a smooth complex projective curve. From the algebraic point of view, these Lagrangian quotients are connected sets of real points inside a complex moduli variety endowed with a real structure; when the rank and the degree are coprime, they are in fact the connected components of the fixed-point set of the real structure. This presentation as a quotient enables us to generalize the methods of Atiyah and Bott to a setting with involutions, and compute the mod 2 Poincare polynomials of these moduli spaces in the coprime case. We also compute the mod 2 Poincare series of moduli stacks of all real and quaternionic vector bundles of a fixed topological type. As an application of our computations, we give new examples of maximal real algebraic varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.