Abstract

Particle acceleration mechanisms in supermassive black hole jets, such as shock acceleration, magnetic reconnection, and turbulence, are expected to have observable signatures in the multi-wavelength polarization properties of blazars. The recent launch of the Imaging X-ray Polarimetry Explorer (IXPE) enables us, for the first time, to use polarization in the X-ray band (2-8 keV) to probe the properties of the jet synchrotron emission in high-frequency-peaked BL Lac objects (HSPs). We report the discovery of X-ray linear polarization (degree $\Pi_{\rm x}=15\pm$2\% and electric-vector position angle $\Psi_{\rm x}=35^\circ\pm4^\circ$) from the jet of the HSP Mrk~421 in an average X-ray flux state. At the same time, the degree of polarization at optical, infrared, and millimeter wavelengths was found to be lower by at least a factor of 3. During the IXPE pointing, the X-ray flux of the source increased by a factor of 2.2, while the polarization behavior was consistent with no variability. The higher level of $\Pi_{\rm x}$ compared to longer wavelengths, and the absence of significant polarization variability, suggest a shock as the most likely X-ray emission site in the jet of Mrk 421 during the observation. The multiwavelength polarization properties are consistent with an energy-stratified electron population, where the particles emitting at longer wavelengths are located farther from the acceleration site, where they experience a more disordered magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.