Abstract

In order to know the role of the Xdsg gene in presumptive PGCs (pPGCs) of Xenopus, we attempted to inhibit the translation of Xdsg mRNA in pPGCs by injecting antisense morpholino oligo (asMO), together with Fluorescein Dextran-Lysine (FDL), into single germ plasm-bearing cells of 32-cell embryos. Among three types of asMOs complementary to different parts of the 5′-untranslated region of Xdsg mRNA tested, only one asMO, designated as Xdsg-3, inhibited the translation of the mRNA in FDL-labeled pPGCs, resulting in the absence of labeled PGCs in experimental tadpoles. On the other hand, two other asMOs, Xdsg-1 and -2, did not inhibit the translation, so that a similar number of labeled PGCs found in FDL-injected but asMO-uninjected control tadpoles were observed in experimental tadpoles derived from asMO-injected embryos. Surprisingly, use of Xdsg-3 asMO resulted in the disappearance of the protein of Xenopus vasa homolog ( Xenopus vasa-like gene 1, XVLG1) from FDL-labeled pPGCs by inhibiting the translation of XVLG1 mRNA. However, the effect of Xdsg-3 asMO on the translation of Xdsg and XVLG1 mRNAs and PGC formation could be canceled by the coinjection with Xdsg mRNA. Consequently, the Xdsg protein in pPGCs may play an important role in the formation of PGCs by regulating the production of XVLG1 protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.