Abstract
This work explores the vibrational state-selective photoassociation (PA) in the ground state of the HX (X = F, Cl, I) molecule by solving the time-dependent Schrödinger equation. For the three systems, the vibrational level of [Formula: see text] is set to be the target state and the PA probability of the target state is calculated and compared by considering different initial collision momentums. It is found that the PA probabilities are in accordance with Franck–Condon overlap integral for the HI and HCl systems, but it is not the case for the HF system. Moreover, for the HF system, it is shown that the PA probability of the target state is largest and the multiphoton transition is more likely to occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.