Abstract

ABSTRACT We present a study of optically selected dual Active Galactic Nuclei (AGN) with projected separations of 3–97 kpc. Using multiwavelength (MWL) information (optical, X-ray, mid-IR), we characterized the intrinsic nuclear properties of this sample and compared them with those of isolated systems. Among the 124 X-ray-detected AGN candidates, 52 appear in pairs and 72 as single X-ray sources. Through MWL analysis, we confirmed the presence of the AGN in >80 per cent of the detected targets in pairs (42 out of 52). X-ray spectral analysis confirms the trend of increasing AGN luminosity with decreasing separation, suggesting that mergers may have contributed to triggering more luminous AGN. Through X-ray/mid-IR ratio versus X-ray colours, we estimated a fraction of Compton-thin AGN (with 1022 cm−2 < NH < 1024 cm−2) of about 80 per cent, while about 16 per cent are Compton-thick sources (with NH > 1024 cm−2). These fractions of obscured sources are larger than those found in samples of isolated AGN, confirming that pairs of AGN show higher obscuration. This trend is further confirmed by comparing the de-reddened [O iii] emission with the observed X-ray luminosity. However, the derived fraction of Compton-thick sources in this sample at the early stages of merging is lower than that reported for late-merging dual-AGN samples. Comparing NH from X-rays with that derived from E(B − V) from narrow-line regions, we found that the absorbing material is likely to be associated with the torus or broad-line regions. We also explored the X-ray detection efficiency of dual-AGN candidates, finding that, when observed properly (at on-axis positions and with long exposures), X-ray data represent a powerful way to confirm and investigate dual-AGN systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.