Abstract

Enoyl acyl carrier protein reductase catalyses the last reductive step of fatty acid biosynthesis, reducing an enoyl acyl carrier protein to an acyl-acyl carrier protein with NAD(P)H as the cofactor. The crystal structure of enoyl reductase (ENR) from Escherichia coli has been determined to 2.1 Å resolution using a combination of molecular replacement and isomorphous replacement and refined using data from 10 Å to 2.1 Å to an R-factor of 0.16. The final model consists of the four subunits of the tetramer, wherein each subunit is composed of 247 of the expected 262 residues, and a NAD+ cofactor for each subunit of the tetramer contained in the asymmetric unit plus a total of 327 solvent molecules. There are ten disordered residues per subunit which form a loop near the nucleotide binding site which may become ordered upon substrate binding. Each monomer is composed of a seven-stranded parallel β-sheet flanked on each side by three α-helices with a further helix lying at the C terminus of the β-sheet. This fold is highly reminiscent of the Rossmann fold, found in many NAD(P)H-dependent enzymes. Analysis of the sequence and structure of ENR and comparisons with the family of short-chain alcohol dehydrogenases, identify a conserved tyrosine and lysine residue as important for catalytic activity. Modelling studies suggest that a region of the protein surface that contains a number of strongly conserved hydrophobic residues and lies adjacent to the nicotinamide ring, forms the binding site for the fatty acid substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.