Abstract

In the last few years, the realization has emerged that the universal baryons are almost equally distributed by mass in three components: (1) galactic concentrations, (2) a warm-hot intergalactic medium (WHIM) and (3) a diffuse intergalactic medium. These three components are predicted by hydrodynamical simulations and are probed by QSO absorption lines. To observe the WHIM in neutral hydrogen, observations are needed which are deeper than log( N HI) = 18. The WHIM should appear as a Cosmic Web, underlying the galaxies with higher column densities. We have used the WSRT to simulate a filled aperture by observing at very high hour angles, to reach very high column density sensitivity. To achieve even higher image fidelity, an accurate model of the WSRT primary beam was developed. This will be used in the joint deconvolution of the observations. To get a good overview of the distribution and kinematics of the Cosmic Web, a deep survey of 1500 square degrees of sky was undertaken, containing the galaxy filament extending between the Local Group and the Virgo Cluster. The auto-correlation data have been reduced and has an RMS of Δ N HI = 4.2 × 10 16 cm −2 over 20 km s −1. Several sources have been tentatively detected, which were previously unknown, as well as an indication for diffuse intergalactic filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call