Abstract

We consider modeling of angular or directional data viewed as a linear variable wrapped onto a unit circle. In particular, we focus on the spatio-temporal context, motivated by a collection of wave directions obtained as computer model output developed dynamically over a collection of spatial locations. We propose a novel wrapped skew Gaussian process which enriches the class of wrapped Gaussian process. The wrapped skew Gaussian process enables more flexible marginal distributions than the symmetric ones arising under the wrapped Gaussian process and it allows straightforward interpretation of parameters. We clarify that replication through time enables criticism of the wrapped process in favor of the wrapped skew process. We formulate a hierarchical model incorporating this process and show how to introduce appropriate latent variables in order to enable efficient fitting to dynamic spatial directional data. We also show how to implement kriging and forecasting under this model. We provide a simulation example as a proof of concept as well as a real data example. Both examples reveal consequential improvement in predictive performance for the wrapped skew Gaussian specification compared with the earlier wrapped Gaussian version.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.