Abstract
The elementary theories of polynomial rings over finite fields with the coprimeness predicate and two kinds of “successor” functions are studied. It is proved that equality is definable in these languages. This gives an affirmative answer to the polynomial analogue of the Woods–Erdös conjecture. It is also proved that these theories are undecidable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.