Abstract
Starting with our remarkable discovery of spherical germanium (Ge) quantum dot (QD) formation, we have embarked on an exciting journey of further discovery, all the while maintaining CMOS-compatible processes. We have taken advantage of the many peculiar and symbiotic interactions of Si, Ge and O interstitials to create a novel portfolio of electronic, photonic and quantum computing devices. This paper summarizes several of these completely new and counter-intuitive accomplishments. Using a coordinated combination of lithographic patterning and self-assembly, size-tunable spherical Ge QDs were controllably placed at designated spatial locations within Si-containing layers. We exploited the exquisite control available through the thermal oxidation of Si 1-x Ge x patterned structures in proximity to Si 3 N 4 /Si layers. Our so-called designer Ge QDs have succeeded in opening up myriad device possibilities, including paired QDs for qubits, single-hole transistors (SHTs) for charge sensing, photodetectors and light-emitters for Si photonics, and junctionless (JL) FETs using standard Si processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.