Abstract

ABSTRACTIn central nervous system vascular endothelial cells, signaling via the partially redundant ligands WNT7A and WNT7B requires two co-activator proteins, GPR124 and RECK. WNT7A and RECK have been shown previously to play a role in limb development, but the mechanism of RECK action in this context is unknown. The roles of WNT7B and GPR124 in limb development have not been investigated. Using combinations of conventional and/or conditional loss-of-function alleles for mouse Wnt7a, Wnt7b, Gpr124 and Reck, including a Reck allele that codes for a protein that is specifically defective in WNT7A/WNT7B signaling, we show that reductions in ligand and/or co-activator function synergize to cause reduced and dysmorphic limb bone growth. Two additional limb phenotypes – loss of distal Lmx1b expression and ectopic growth of nail-like structures – occur with reduced Wnt7a/Wnt7b gene copy number and, respectively, with Reck mutations and with combined Reck and Gpr124 mutations. A third limb phenotype – bleeding into a digit – occurs with the most severe combinations of Wnt7a/Wnt7b, Reck and Gpr124 mutations. These data imply that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system functions as an integral unit in limb development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.