Abstract

During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

Highlights

  • Neural crest cells (NCCs) are multipotent precursor cells that are specified at the boundary between neural plate and epidermis upon induction by growth factors such as Wnts, BMPs, FGFs and retinoic acid (RA) [1]

  • We provide the first analysis of expression and activity of the Wnt co-receptor Lrp5 during zebrafish craniofacial development

  • Elevated and regionally restricted expression of lrp5 in the early hindbrain are a first hint that lrp5 might be involved in cranial neural crest cells (CNCCs) formation and migration

Read more

Summary

Introduction

Neural crest cells (NCCs) are multipotent precursor cells that are specified at the boundary between neural plate and epidermis upon induction by growth factors such as Wnts, BMPs, FGFs and retinoic acid (RA) [1]. Committed NCCs undergo an epithelial to mesenchymal transition (EMT) before delaminating from the neural plate and migrating ventrally along distinct routes. Depending mostly on extrinsic cues derived from targeting tissues, they differentiate into various cell types and tissues such as neurons of the enteric and peripheral nervous system, endocrine and para-endocrine derivatives and pigment cells [2]. PLOS ONE | DOI:10.1371/journal.pone.0131768 June 29, 2015

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.