Abstract

Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

Highlights

  • Zika virus (ZIKV) is an arbovirus that belongs to the family Flaviviridae

  • We assessed vector competence for ZIKV in wMel-infected and wMel-free Ae. aegypti from Medellin, Colombia. This was done because medium-scale deployments of wMel-infected Ae. aegypti began in the dengue virus (DENV) metropolitan area of Medellin in the spring of last year (2015) [see www.eliminatedengue.com/colombia], and ZIKV co-circulates with DENV in Colombia

  • We verified that the phenotype of reduced vector competence existed in Wolbachia-infected laboratory colonies of Colombian Ae. aegypti for ZIKV

Read more

Summary

Introduction

Zika virus (ZIKV) is an arbovirus that belongs to the family Flaviviridae. It currently is causing an explosive outbreak of febrile disease in the Americas. The data presented provide information on the effectiveness of Colombian Wolbachia-infected Ae. aegypti in blocking the transmission of ZIKV, as well as describe a biologically relevant model for studying ZIKV transmission dynamics (i.e., exposure to virus was accomplished by feeding on a viremic host) that does not rely on animal blood spiked with cultured virus.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.