Abstract

This so-called Wittig reaction has a number of advantages over other olefination methods; in particular, it occurs with total positional selectivity (that is, an alkene always directly replaces a carbonyl group). By comparison, a number of other carbonyl olefination reactions often occur with double-bond rearrangement. In addition, the factors that influence Eand Z-stereoselectivity are well understood and can be readily controlled through careful selection of the phosphorus reagent and reaction conditions. A wide variety of phosphorus reagents are known to participate in Wittig reactions and the exact nature of these species is commonly used to divide the Wittig reaction into three main groups, namely the ‘‘classic’’ Wittig reaction of phosphonium ylides, the Horner–Wadsworth–Emmons reaction of phosphonate anions, and the Horner–Wittig reaction of phosphine oxide anions. Each of these reaction types has its own distinct advantages and limitations, and Ph3P O Ph Ph Ph3P CH2

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.