Abstract

We state Asymptotic Expansion and Growth Rate conjectures for the Witten–Reshetikhin–Turaev invariants of arbitrary framed links in 3-manifolds, and we prove these conjectures for the natural links in mapping tori of finite-order automorphisms of marked surfaces. Our approach is based upon geometric quantisation of the moduli space of parabolic bundles on the surface, which we show coincides with the construction of the Witten–Reshetikhin–Turaev invariants using conformal field theory, as was recently completed by Andersen and Ueno.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.