Abstract
It is recently shown that a split-step quantum walk possesses a chiral symmetry, and that a certain well-defined index can be naturally assigned to it. The index is a well-defined Fredholm index if and only if the associated unitary time-evolution operator has spectral gaps at both [Formula: see text] and [Formula: see text] In this paper, we extend the existing index formula for the Fredholm case to encompass the non-Fredholm case (i.e. gapless case). We make use of a natural extension of the Fredholm index to the non-Fredholm case, known as the Witten index. The aim of this paper is to fully classify the Witten index of the split-step quantum walk by employing the spectral shift function for a rank one perturbation of a fourth-order difference operator. It is also shown in this paper that the Witten index can take half-integer values in the non-Fredholm case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.