Abstract
In this Note we generalise the Witten deformation to even dimensional Riemannian manifolds with cone-like singularities X and certain functions f, which we call admissible Morse functions. As a corollary we get Morse inequalities for the L 2-Betti numbers of X. The contribution of a singular point p of X to the Morse inequalities can be expressed in terms of the intersection cohomology of the local Morse datum of f at p. The definition of the class of functions which we study here is inspired by stratified Morse theory as developed by Goresky and MacPherson. However the setting here is different since the spaces considered here are manifolds with cone-like singularities instead of Whitney stratified spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.