Abstract
Many taxa exhibit plastic immune responses initiated after primary microbial exposure that provide increased protection against disease-induced mortality and the fitness costs of infection. In several arthropod species, this protection can even be passed from parents to offspring through a phenomenon called trans-generational immune priming. Here, we first demonstrate that trans-generational priming is a repeatable phenomenon in flour beetles (Tribolium castaneum) primed and infected with Bacillus thuringiensis (Bt). We then quantify the within-host dynamics of microbes and host physiological responses in infected offspring from primed and unprimed mothers by monitoring bacterial density and using mRNA-seq to profile host gene expression, respectively, over the acute infection period. We find that priming increases inducible resistance against Bt around a critical temporal juncture where host septicaemic trajectories, and consequently survival, may be determined in unprimed individuals. Our results identify a highly differentially expressed biomarker of priming, containing an EIF4-e domain, in uninfected individuals, as well as several other candidate genes. Moreover, the induction and decay dynamics of gene expression over time suggest a metabolic shift in primed individuals. The identified bacterial and gene expression dynamics are likely to influence patterns of bacterial fitness and disease transmission in natural populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.