Abstract

Abstract The atmospheric response to sea ice anomalies over the Barents Sea during winter was determined by boundary forcing the Community Atmosphere Model (CAM) with daily varying high and low sea ice concentration (SIC) anomalies that decreased realistically from December to February. The high- and low-SIC anomalies produced localized opposite-signed responses of surface turbulent heat flux and wind stress that decreased in magnitude and extent as winter progressed. Responses of sea level pressure (SLP) and 500-mb height evolved from localized, opposite-signed features into remarkably similar large-scale patterns resembling the negative phase of the North Atlantic Oscillation (NAO). Hilbert empirical orthogonal function (HEOF) analysis of the composite high-SIC and low-SIC SLP responses uncovered how they differed. The hemispheric pattern in the leading HEOF was similar for the high-SIC and low-SIC responses, but the high-SIC response cycled through the pattern once per winter, whereas the low-SIC response cycled through the pattern twice per winter. The second HEOF differed markedly between the responses, with the high-SIC response featuring zonally oriented Atlantic and Pacific wave features and the low-SIC response featuring a meridionally oriented Atlantic dipole pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.