Abstract
Conditional heteroskedasticity is a common feature of financial and macroeconomic time series data. When such heteroskedasticity is present, standard checks for serial correlation in dynamic regression models are inappropriate. In such circumstances, it is obviously important to have asymptotically valid tests that are reliable in finite samples. Monte Carlo evidence reported in this paper indicates that asymptotic critical values fail to give good control of finite sample significance levels of heteroskedasticity-robust versions of the standard Lagrange multiplier test, a Hausman-type check, and a new procedure. The application of computer-intensive methods to removing size distortion is, therefore, examined. It is found that a particularly simple form of the wild bootstrap leads to well-behaved tests. Some simulation evidence on power is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.