Abstract

This paper is concerned with the Wigner–Poisson–Fokker–Planck system, a kinetic evolution equation for an open quantum system with a non-linear Hartree potential. Existence, uniqueness and regularity of global solutions to the Cauchy problem in 3 dimensions are established. The analysis is carried out in a weighted L2-space, such that the linear quantum Fokker–Planck operator generates a dissipative semigroup. The non-linear potential can be controlled by using the parabolic regularization of the system.The main technical difficulty for establishing global-in-time solutions is to derive a-priori estimates on the electric field: Inspired by a strategy for the classical Vlasov–Fokker–Planck equation, we exploit dispersive effects of the free transport operator. As a “by-product” we also derive a new a-priori estimate on the field in the Wigner–Poisson equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.