Abstract
The Wigner representation of a quantum state, corresponding to a classically integrable Hamiltonian, has been shown to be intimately tied to a classical phase space torus of the same energy. The fact that the semiclassical approximation of the Wigner function there derived turns out to be singular on the torus, as well as on the “Wigner caustic” which contains it, is due to well known limitations of the stationary phase method. The uniform approximation, here derived, does indeed ascribe to the Wigner function a high amplitude along the Wigner caustic, but this is modulated by rapid oscillations except at the torus itself. Asymptotic expansion away from the torus leads back to the semiclassical approximation. Close to the torus the Wigner function is described by a simple transitional approximation which can be resolved into a product of Wigner functions corresponding to one dimensional tori. These results permit one to explicitly project the Wigner function onto any (Lagrangian) coordinate plane so as to obtain the corresponding wave intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.