Abstract

We build Wigner maps, functions and operators on general phase spaces arising from a class of Lie groups, including non-unimodular groups (such as the affine group). The phase spaces are coadjoint orbits in the dual of the Lie algebra of these groups and they come equipped with natural symplectic structures and Liouville-type invariant measures. When the group admits square-integrable representations, we present a very general construction of a Wigner function which enjoys all the desirable properties, including full covariance and reconstruction formulae. We study in detail the case of the affine group on the line. In particular, we put into focus the close connection between the well-known wavelet transform and the Wigner function on such groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.