Abstract

We explicitly establish a unitary correspondence between spherical irreducible tensor operators and cartesian tensor operators of any rank. That unitary relation is implemented by means of a basis of integer-spin wave functions that constitute simultaneously a basis of the spaces of cartesian and spherical irreducible tensors. As a consequence, we extend the Wigner--Eckart theorem to cartesian irreducible tensor operators of any rank, and to totally symmetric reducible ones. We also discuss the tensorial structure of several standard spherical irreducible tensors such as ordinary, bipolar and tensor spherical harmonics, spin-polarization operators and multipole operators. As an application, we obtain an explicit expression for the derivatives of any order of spherical harmonics in terms of tensor spherical harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.