Abstract

The Wiener index is defined to be the sum of distances between every unordered pair of vertices in a connected hypergraph. In this paper, we first study how the Wiener index of a hypergraph changes under some graft transformations. For $$1\le m\le n-1$$, we obtain the unique hypertree that achieves the minimum (or maximum) Wiener index in the class of hypertrees on n vertices and m edges. Then we characterize the unique hypertrees on n vertices with first three smallest Wiener indices, and the unique hypertree (not 2-uniform) with maximum Wiener index, respectively. In addition, we determine the unique hypergraph that achieves the minimum Wiener index in the class of hypergraphs on n vertices and p pendant edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.