Abstract

The rapid development in the clinical microbiology diagnostic assays presents more challenges for developing countries than for the developed world, especially in the area of test validation before the introduction of new tests. Here we report on the misleading high MICs of Candida spp. to azoles using the ATB FUNGUS 3 (bioMérieux, La Balme-les Grottes, France) with automated readings in China to highlight the dangers of introducing a diagnostic assay without validation. ATB FUNGUS 3 is the most commonly used commercial antifungal susceptibility testing method in China. An in-depth analysis of data showed higher levels of resistance to azoles when ATB FUNGUS 3 strips were read automatically than when read visually. Based on this finding, the performance of ATB FUNGUS 3, read both visually and automatically, was evaluated by testing 218 isolates of five clinically important Candida species, using broth microdilution (BMD) following CLSI M27-A3 as the gold-standard. The overall essential agreement (EA) between ATB visual readings and BMD was 99.1%. In contrast, the ATB automated readings showed higher discrepancies with BMD, with overall EA of 86.2%, and specifically lower EA was observed for fluconazole (80.7%), voriconazole (77.5%), and itraconazole (73.4%), which was most likely due to the trailing effect of azoles. The major errors in azole drug susceptibilities by ATB automated readings is a concern in China that can result in misleading clinical antifungal drug selection and pseudo high rates of antifungal resistance. Therefore, the ATB visual reading is generally recommended. In the meantime, we propose a practical algorithm to be followed for ATB FUNGUS 3 antifungal susceptibility for Candida spp. before the improvement in the automated reading system.

Highlights

  • The rapid development in clinical microbiology laboratory diagnostic assays presents more challenges for developing countries than their developed world counterparts, especially with regard to validation and quality control of such assays

  • We propose a practical algorithm to be followed for ATB FUNGUS 3 antifungal susceptibility for Candida spp. before the improvement in the automated reading system

  • The main aim of the present study was to evaluate the performance of the ATB FUNGUS 3 strips in relation to the Clinical and Laboratory Standard Institute (CLSI) broth microdilution (BMD) method for the in vitro antifungal susceptibility testing of Candida isolates from multicenters in China

Read more

Summary

Introduction

The rapid development in clinical microbiology laboratory diagnostic assays presents more challenges for developing countries than their developed world counterparts, especially with regard to validation and quality control of such assays. The widely used but problematic ATB FUNGUS 3 with ATB Expression Bacteriology Analyzer automated readings (bioMerieux, La Balme-les Grottes, France) in China and its misleading reported high MICs of Candida spp. to azoles, gave a very good show case to highlight the challenges faced by clinical microbiology labs in developing countries. An analysis of reported data on antifungal susceptibility patterns from different centers in China revealed considerable variability, especially for azole drugs. ATB FUNGUS 3 is the most commonly used commercialized antifungal susceptibility test method in China, and an in-depth analysis of data on Candida susceptibility to fluconazole showed higher levels of resistance when ATB FUNGUS 3 strips were read automatically than when read visually, suggesting possible errors by the ATB FUNGUS 3 strips automated reading system [6,7,8,9,10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call