Abstract

The whole sporozoite (SPZ) vaccine platform provides the only established approach for inducing high-level sustained protective immunity in humans against malaria. We introduce this platform, highlight literature published since 2011, and discuss the challenges of further development. There are three major approaches to development of a whole parasite vaccine to prevent malaria infection using the SPZ platform: radiation-attenuated sporozoites (irrSPZ), chemoprophylaxis with infectious sporozoites (CPS), and genetically attenuated parasites (GAPs). In all three, SPZ are administered to the vaccinee. All three protect animals against infection when administered by injection with a needle and syringe, and irrSPZ and CPS protect against Plasmodium falciparum malaria in humans when P. falciparum SPZ (PfSPZ) are administered by mosquito bite. Metabolically active, nonreplicating (radiation attenuated) aseptic, purified, cryopreserved PfSPZ (PfSPZ Vaccine), and infectious, aseptic, purified, cryopreserved PfSPZ administered with chemoprophylaxis (PfSPZ-CVac approach) administered by needle and syringe have entered clinical trials. Preliminary data indicate that the PfSPZ Vaccine is safe, well tolerated and highly protective when administered intravenously. With proof-of-concept now established for high-grade protection induced by parenteral administration of a whole sporozoite vaccine, pathways for further development are currently being defined. Demonstration of high-level, durable, cross-strain P. falciparum protection would set the stage for licensure of a vaccine that could lead to dramatic reductions in malaria morbidity and mortality, and eventually elimination of this ancient scourge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call